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Abstract: Cognitive Radio (CR) is a self-adaptive wireless technology that can detect available channels automatically 

in a wireless spectrum and configured dynamically. Spectrum sensing in CR is the fundamental activity to detect 

unused spectrum holes in an opportunistic manner. In Spectrum sensing, various methods have been proposed and 

studied exhaustively by the CR researchers. Blind spectrum sensing methods such as an Eigenvalue based Detection 

(EVD) and Energy Detection (ED) does not require any information of the transmitted signal characteristics, the 

channel or the noise-power, which are unknown at the receiver. The main aim of this work is to sense the spectrum at 

very low Signal to Noise Ratio (SNR) under frequently changing wireless environment. A combined blind spectrum 

sensing is proposed based on an adaptive SNR threshold calculation which achieves better sensing accuracy than the 

two individual detectors. In this paper spectrum sensing is done for DVB-T signals in the VHF band which has been 

declared as an operating band for Cognitive users. 
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I. INTRODUCTION 

Wireless services have been experiencing a huge 

expansion and evolution in recent years. Besides, there has 

been a continuously increasing demand of higher 

bandwidths to serve the needs of higher data rates, which 

creates a phenomenon known as spectrum scarcity. 

Wireless networks are regulated by a fixed spectrum 

assignment policy and is assigned to license holders or 

services on a long-term basis for large geographical 

regions [1]. In addition, the assigned spectrum is used at 

irregular intervals of time. A slice of spectrum is more 

concentrated like 900 MHz, while a significant amount of 

spectrum remains unutilized. This paradox has led to the 

introduction of a dynamic spectrum access (DSA). In DSA, 

there are two types of users: primary user (PU) and 

secondary user (SU). The PU is the licensed owner of the 

spectrum. The SU is the unlicensed user, but can access 

the radio spectrum opportunistically when it is not being 

used by its PU. 

A primary challenge that DSA faces is how to find the 

unused portion called spectrum hole. Spectrum holes can 

be found using spectrum sensing which is basically 

measuring a signal inside a specific frequency band and 

accordingly declaring whether a signal is present or not [2]. 

Spectrum sensing techniques can be grouped into two 

categories: non-blind and blind. In non-blind spectrum 

sensing, the SU or the CR device has to know some of the 

PU signal characteristics [3] [4]. Additionally, most of the 

non-blind spectrum sensing techniques require accurate 

synchronization, which is difficult to maintain especially 

in the low SNR values [5].  

Blind sensing techniques like Energy Detection (ED) 

[6] and Eigenvalue-based Detection (EVD) [7] algorithms 

are developed, basically tests the extent of the  

 

received signal Gaussianity. Of these methods ED is semi-

blind detection, which is optimal for detecting independent 

and identically distributed (iid) signal. The major 

drawback of ED is that it requires knowledge of the noise 

power causes SNR wall problem [8] and it is not optimal 

for highly correlated signals. To address the drawbacks, in 

[7], Zeng et al. presented EVD which showed immunity to 

noise-power uncertainty for maximum-minimum 

eigenvalue (MME) ratio detection based on random matrix 

theory (RMT). Moreover, these eigenvalue schemes do not 

require accurate synchronization. In this paper, a 

combination of ED, MME, and MX-GM is introduced 

based on adaptive SNR threshold λ which switches 

between the different spectrum sensing schemes in a 

frequently varying wireless environment. Simulations 

based on randomly generated signals and digital television 

(DTV) signals are considered to verify the efficiency of 

the adaptive method. 

The rest of this paper is structured as follows: Section 

II presents the system model with the existing hypothesis 

used, in Section III, we discuss the adaptive spectrum 

sensing technique using ED and EVD. Section IV shows 

the simulation results of real life signals. Finally, Section 

V concludes the paper. 

II. SYSTEM MODEL 

This section of the paper presents the system model 

and some of the theoretical aspects used through the paper. 

A. Signal Model 

Consider a received signal, x(k), which can be either: 

(a) only noise components, η(k); or (b) a PU signal s(k) 
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with channel response h(k), bearing noise η(k). Both (a) 

and (b) can be put in a binary hypothesis framework as 

𝑥(𝑘) = { 
𝜂(𝑘),                                    𝐻0

ℎ(𝑘)𝑠(𝑘) + 𝜂(𝑘),      𝐻1
 (1) 

with H0 representing the spectrum hole denoting the 

existence of only noise and H1 denoting the existence of a 

PU signal bearing noise. 

B. Performance Metrics 

To evaluate an adaptive spectrum sensing technique, 

the sensing accuracy and the complexity of the technique 

are considered as performance metrics. The sensing 

accuracy is judged using two statistical measures, namely, 

the probability of false alarm and the probability of 

detection. The probability of false alarm is the probability 

of wrongfully detecting the existence of a signal when 

only noise is present [9]. In the binary hypothesis 

framework, the probability of false alarm pfa, is formulated 

as 

𝑝𝑓𝑎  =  𝑃(𝐻1|𝐻0) (2) 

The probability of detection is defined as the probability of 

truly detecting an existing PU signal. Hence, the 

probability of detection pd, is obtained statistically as 

𝑝𝑑   =  𝑃(𝐻1 |𝐻1) (3) 

 

III.  ADAPTIVE SPECTRUM SENSING 

TECHNIQUE 

The adaptive spectrum sensing scheme is proposed to 

adapt the sensing method according to the frequently 

changing wireless environment and the available 

information. The flow graph for the adaptive spectrum 

sensing technique is given below 

Fig. 1.  Flow Diagram of Adaptive Spectrum Sensing 

When prior knowledge about the PU signal is not 

available, then the adaptive spectrum sensing technique 

adapts to either ED or EVD depending on the SNR of the 

received signal.  

The received signal x(k) is first pre-filtered by an ideal 

bandpass filter with transfer function to limit the average 

noise power and normalize the noise variance. 

𝐻(𝑓) =  {

2

√𝑁0

,            |𝑓 − 𝑓𝑐|  ≤ 𝐵

0,                  |𝑓 −  𝑓𝑐| > 𝐵

 

 

(4) 

The SNR of the filtered output is determined using a 

period gram uses a Kaiser window with β = 38. The 

computation of noise energy excludes the power of the 

first six harmonics, including the fundamental. 

A. Energy Detector 

The output of the filter is squared and integrated over a 

time interval T to produce a measure of the energy of the 

received signal. The output of the Integrator denoted by E 

will act as the test statistic to test the two hypotheses H0 

and H1. Consequently, the decision is taken as  

𝐸 → {
(∑|𝑥(𝑛)|2

𝑁

𝑛=1

) <  𝜌,                     𝐻0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                    𝐻1

 

 

(5) 

where ρ is the threshold for detection. The output of the 

ED is Chi-square distributed which can be approximated 

as a Gaussian distribution under the assumption that N → 

∞ [9]. Based on this approximation, ρ is found as 

𝜌 = 2√2𝑁𝜎𝑧
2𝑄−1(𝑝𝑓𝑎) + 𝑁𝜎𝑧

2, (6) 

where Q−1(.) is the inverse Q function, σz
2 is the noise 

variance, pfa is the probability of false alarm for the ED 

and N is the quantity of samples collected. 

B. Eigenvalue Detection 

To reduce complexity of EVD method, the signal 

model of received signal considered as 

�̂� =  [

𝑥1(1) 𝑥2(1) ⋯ 𝑥𝐿(1)

𝑥1(2) 𝑥2(2) ⋯ 𝑥𝐿(2)
⋮          ⋮     ⋮      ⋮

𝑥1(𝑛) 𝑥2(𝑛) ⋯ 𝑥𝐿(𝑛)

] 

 

(7) 

where �̂� = 𝑠 + 𝜂, be N × L received PU signal, where N is 

no of samples collected and L is the consecutive samples 

or multiple receiver model. Here noise η assumed to be a 

stationary process satisfying with zero mean and variance 

ση
2. 

The statistical covariance matrix of the received signal 

defined as: 

𝑅𝑥𝑥 = 𝐸((�̂� − �̿�)𝑇(�̂� − �̿�)) (8) 

where T denotes transpose. The sample covariance matrix 

Rxx is of order L × L which requires less computational 

complexity compared to Zeng. [7] which yields L 

eigenvalues. Based on the calculated L eigenvalues, we 

propose two detection methods as follows: 
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1. Maximum Minimum Eigenvalue (MME) Detection: 

Obtain the maximum and minimum eigenvalues of the 

matrix Rxx, that is, λmax and λmin. 

Decision threshold of MME can be given as: if 

 𝜆𝑚𝑎𝑥 (𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛)⁄ > 𝛾1 , then signal exists (H1); 

otherwise, signal does not exist (H0), where γ1 > 0.5 is a 

threshold, and will be given in the next section. 

   Detection Threshold: To find the threshold for this 

statistical test, it is important to study the statistical 

distribution of the covariance matrix when there is no PU 

signal. The sample covariance matrix of the noise Rη(N) is 

nearly a Wishart random matrix. 

Using the theory [7], we can analyse the threshold for 

MME as per eq. (9) 

𝛾1 =  
(√𝑁 + √𝐿)

2(𝑁 + 𝐿)
(1 +

(√𝑁 + √𝐿)−2/3

(𝑁𝐿)1/6
 𝐹1

−1(1 − 𝑃𝑓𝑎)) 

 (9) 

where γ1 is the threshold for detection, F1
−1 is Tracy 

Widom distribution [10]. 

2. Maximum Geometric Mean (MX-GM) Detection: 

Similarly, λmax and λGM are calculated based on sample 

covariance matrix Rxx. 

Decision threshold can be given as: if (𝜆𝑚𝑎𝑥/𝜆𝐺𝑀)  >
 𝛾2, then signal exists (H1); otherwise, signal does not exist 

(H0), where γ2 > 1 is a threshold, and will be given as eq. 

(10) 

𝛾2 =  
(√𝑁 + √𝐿)

𝑁
(1 +

(√𝑁 + √𝐿)−2/3

(𝑁𝐿)1/6
 𝐹1

−1(1 − 𝑃𝑓𝑎)) 

 (10) 

The above equations for threshold shows threshold is 

not dependent on noise power or noise level and can be 

evaluated from a number of samples N, L and false alarm 

probability pfa whatever be the noise, interference and 

signal characteristics. The threshold is independent of 

noise power is the basic advantage due to which 

eigenvalue detection is the most reliable method. 

 

IV. SIMULATION RESULTS AND DISCUSSION 

Most of the spectrum in the range 700 MHz and 2.6 

GHz have already been allocated for use. From [11], 

Television band (TV 2-6) is utilized less than 15% of the 

users which leads to underutilization of the 

electromagnetic spectrum. Here we present the simulation 

results and evaluate the performance of the blind spectrum 

sensing algorithms considering the parameters such as 

probability of detection, probability of false alarm and 

SNR for DVB-T signal which uses 64 QAM OFDM at 

VHF band. In addition to the presence of AWGN, 

multipath fading like Rayleigh fading and time dispersion 

are applied to PU to generate real-time environment. Then 

we have shown the adaptive spectrum sensing scheme to 

adapt the method according to the frequently changing 

wireless environment and the available information. All 

the results are averaged over 1000 Monte Carlo 

realizations (for each realization, random channel, and 

random noise). 

 
Fig. 2. Plot of pd vs pfa for Energy detection 

Figure 2 shows a plot of pd vs pfa for SNR = 2 dB for 

energy detection. It is observed that there is a trade-off 

between pd and pfa values. For pfa values from 0.07 to 0.8 

the detection probability is optimum. After that the 

detection probability approaches 1. 

 
Fig. 3. Plot of pd vs SNR for Energy detection 

Figure 3 shows the plot of pd vs SNR for various pfa for N 

= 1000. As pfa increases, the detection probability also 

increases. 

Fig. 4. Plot of pd vs pfa for Eigenvalue detection 
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But, in a general wireless environment, maximum 

allowable pfa is 0.1. ED with noise uncertainty almost does 

not change with an increase in the number of samples N. 

From the graph it is observed that in increasing SNR 

values there is a linear increase in the probability of 

detection. For low values of SNR, the detection 

probability is almost 0. Above 2 dB the detection 

probability approaches 1. 

Figure 4 shows a plot of pd vs pfa for SNR = -10 dB for 

EVD for sample size N = 5000. It is observed that the 

detection probability is optimum for EVD which almost 

approaches to 1 for pfa values greater than 0.01 which 

states that it doesn’t affect with noise uncertainty. 

 
Fig. 5. Plot of pd vs SNR for Eigenvalue detection 

Figure 5 shows the plot of pd vs SNR for pfa = 0.05 and 

various no of samples for MME. It is observed that in 

increasing SNR values there is a linear increase in the 

probability of detection. The Probability of detection is 

high even for low values of SNR compared to ED. As the 

no of samples increases, the detection probability 

increases and computational complexity also increase. 

Above -17 dB the detection probability reaches 1 for N = 

10000 samples. The main drawback of EVD is the 

complexity compared to ED. 

 
Fig. 6. Comparison of MME and MX-GM EVD method 

Figure 6, compares the detection probabilities for N = 

20000 for EVD. Mx-GM is better compared to MME, but 

the additional complexity for calculation of the Geometric 

Mean of all Eigenvalues. 

 
Fig. 7. Plot of Blind Adaptive Spectrum Sensing of primary user 

Figure 7 shows a plot of blind adaptive spectrum 

sensing of the PU signal. When the prior knowledge about 

the primary user signal is not known, then the SNR of the 

signal is estimated. If the SNR value is less than the 

threshold λ = 2 dB, then Eigen value detection is applied. 

If the SNR value is less than the threshold λ, then EVD is 

applied. If the SNR value is greater than the threshold λ, 

then ED technique is applied. 

Wireless networks, which are close to each other and 

transmitting on the same channel can cause some major 

drop outs and slow connections. In this scenario, the signal 

will on and off at the carrier frequency. To test in real time, 

Simulink based spectrum sensing in Cognitive Radio 

based on adaptive spectrum sensing is shown in Figure 8. 

The primary user of 100 MHz TV signal is passed through 

a channel with AWGN noise and then proposed scheme is 

applied for spectrum hole’s detection. 

 
Fig. 8. Matlab Simulink schematic of adaptive spectrum sensing method 
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The presence of primary user TV signal is decided 

using adaptive method. 

 
Fig. 9. Primary user activity detected with respect to time 

Figure 9 describes the primary user activity in the 

channel 1 and channel 2 with respect to time, with white 

noise at 10 dB and -10 dB SNR. For channel 1, spectrum 

holes are detected using ED and channel 2 holes are 

detected by EVD. From figure 9, it can be observed the 

EVD method has more delay over ED for sensing because 

of complexity. The detected holes can be allocated to any 

secondary users by a frequency allocation process. 

 

V. CONCLUSION 

An adaptive spectrum sensing technique has been 

implemented in MATLAB. It is observed that Energy 

detection is the simplest technique, but it relies on the 

knowledge of accurate noise power, and inaccurate 

estimation of the noise power leads to SNR wall problem 

and high probability of false alarm i.e. the detection 

performance is high after a certain value of SNR (2 dB). 

Eigenvalue detection implementation is slightly complex 

compared to energy detection, but it shows good detection 

performance even under low SNR conditions where the 

energy detector doesn’t work well. Therefore, energy 

detection is applied when the SNR value is greater than 2 

dB and Eigenvalue detection is applied when the SNR is 

less than 2 dB. Time-based spectrum sensing has done 

using MATLAB Simulink. The primary user activity is 

observed and a decision is made, based on proposed 

adaptive spectrum sensing. This adaptive spectrum sensing 

technique reduces the overall complexity of the individual 

spectrum sensing process. It can be concluded that, 

Spectrum hole’s map in a VHF broadcasting band can be 

built using the adaptive spectrum sensing. In future, a 

hardware implementation in FPGA of proposed adaptive 

spectrum sensing scheme can also be attempted. 
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